Turbulent Boundary-Layer Separation
نویسنده
چکیده
This article summarizes our present understanding of the physical behavior of two-dimensional turbulent separated flows, which occur due to adverse pressure gradients around streamlined and bluff bodies. The physical behavior of turbulence is flow dependent, so detailed experimental infor mation is needed for understanding such flows and modeling their physics for calculation methods. An earlier review (Simpson 1 985) discussed in much detail prior experimental and computational work, and this was followed by an updated review of calculation methods only (Simpson 1 987). Here additional recent references are added to those cited in the two other works. By separation, we mean the entire process of departure or breakaway, or the breakdown of boundary-layer flow. An abrupt thickening of the rotational-flow region next to a wall and significant values of the normal to-wall velocity component must accompany breakaway, or otherwise this region would not have any significant interaction with the free-stream flow. This unwanted interaction causes a reduction in the performance of the flow device of interest (e.g. a loss of lift on an airfoil or a loss of pressure rise in a diffuser). It is too narrow a view to use vanishing surface shearing stress or flow reversal as the criterion for separation. Only in steady two-dimensional flow do these conditions usually accompany separation. In unsteady two dimensional flow the surface shear stress can change sign with flow reversal without the occurrence of breakaway_ Conversely, the breakdown of the boundary-layer concept can occur before any flow reversal is encountered. In three-dimensional flow the rotational layer can depart without the
منابع مشابه
Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملTowards an Analytical Model for Film Cooling Prediction using Integral Turbulent Boundary layer
The objective of this work is to develop deep theoretical methods that are based on the solution of the integral boundary layer equations for investigating film cooling in liquid rocket engine. The integral model assumes that heat is transferred from hot free stream gas to the liquid film both by convection and radiation. The mass is transferred to the free srteam gas by the well-known blowing ...
متن کاملA Novel Similarity Solution of Turbulent Boundary Layer Flow over a Flat Plate
In this paper, the similarity solution of turbulent boundary layer flow on the flat plate with zero pressure gradients is presented. By employing similarity variables the governing partial differential equations are transformed to ordinary ones with inconsistent coefficients and solved numerically with the use of Runge–Kutta and shooting methods in conjunction with trial and error procedure. Fo...
متن کامل